منابع مشابه
Finitely Presented Modules over Semihereditary Rings
We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M. Moreover M/tM is a projective module which is isomorphic to a dir...
متن کاملFinitely presented modules over semihereditary rings
We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M . Moreover M/tM is a projective module which is isomorphic to a di...
متن کاملPolynomial Rings over Pseudovaluation Rings
Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1974
ISSN: 0002-9939
DOI: 10.2307/2040056